Low-rank geometric mean metric learning

Mukul Bhutani 1 Pratik Jawanpuria 2 Hiroyuki Kasai 3 Bamdev Mishra 2

Introduction. We propose a scalable solution for the Mahalanobis metric learning problem (Kulis, 2012). The Mahalanobis distance is defined as $d_A(x, x') = (x - x')^\top A(x - x')$, where $x, x' \in \mathbb{R}^d$ are input vectors and A is a $d \times d$ symmetric positive definite (SPD) matrix. The objective is to learn a suitable SPD matrix A from the given data. Since A is a $d \times d$ SPD matrix, most state-of-the-art metric learning algorithms scale poorly with the number of features d (Harandi et al., 2017). To mitigate this, a pre-processing step of dimensionality reduction (e.g., by PCA) is generally applied before using popular algorithms like LMNN and ITML (Weinberger & Saul, 2009; Davis et al., 2007).

Recently, (Zadeh et al., 2016) proposed the geometric mean metric learning (GMML) formulation, which enjoys a closed-form solution. However, it requires matrix A to be positive definite, which makes it unsuitable in a high dimensional setting. To alleviate this concern, we propose a low-rank decomposition of A in the GMML setting. Low-rank constraint also has a natural interpretation in the metric learning setting, since the group of similar points in the given dataset reside in a low-dimensional subspace. We jointly learn the low-dimensional subspace along with the metric. We show that the optimization is on the Grassmann manifold and propose a computationally efficient algorithm.

On real-world datasets, we achieve competitive results comparable with the GMML algorithm, even though we work on a smaller dimensional space.

Problem formulation. We follow a weekly supervised approach in which we are provided two sets S and D containing pairs of input points belonging to same and different classes respectively. Taking inspiration from GMML, we formulate the objective function as:

$$\min_{A \succeq 0} \quad \text{Tr}(AS) + \text{Tr}(A^\top D)$$

subject to $\text{rank}(A) = r$,

(1)

where $S := \sum_{(x_i, x_j) \in S} (x_i - x_j)(x_i - x_j)^\top$, $D := \sum_{(x_i, x_j) \in D} (x_i - x_j)(x_i - x_j)^\top$, and A^\dagger is the pseudoinverse of A.

Exploiting a particular fixed-rank factorization (Meyer et al., 2011), we factorize rank-r matrix $A = UBU^\top$, where U is an orthonormal matrix of size $d \times r$ and $B \succ 0$ is of size $r \times r$. Consequently, we rewrite (1) as:

$$\min_{U^\top U = I} \min_{B \succ 0} \quad \text{Tr}(UBU^\top S) + \text{Tr}(UB^{-1}U^\top D).$$

(2)

If we define $\tilde{S} = U^\top SU$ and $\tilde{D} = U^\top DU$, then the inner minimization problem has a closed-form solution as the geometric mean of S^{-1} and D (Zadeh et al., 2016). Using this fact, the outer optimization problem is readily checked to be only on the column space of U. The set of column spaces is the abstract Grassmann manifold, which is defined as the set of r-dimensional subspaces in \mathbb{R}^d. Equivalently, (2) is an optimization problem on the Grassmann manifold.

Extending the idea to a setting which weights the sets S and D unequally, we obtain the formulation

$$\min_{U^\top U = I} \min_{B \succ 0} \quad (1 - t)\delta_R(B, (U^\top SU)^{-1}) + t\delta_R^2(B, U^\top DU),$$

(3)

where δ_R denotes the Riemannian distance on the SPD manifold and $t \in [0, 1]$ is a hyperparameter. Similarly to (2), the problem (3) is also on the Grassmann manifold as the inner problem has a closed-form solution as the weighted geometric mean between S^{-1} and D.

Results. Our proposed algorithm LR-GMML is implemented using the off-the-shelf conjugate gradients solver of Manopt (Boumal et al., 2014). The codes are available at https://github.com/muk343/LR-GMML. We compare LR-GMML with GMML on publicly available UCI datasets by measuring the classification error for a k-NN classifier following the procedure in (Zadeh et al., 2016). Parameter t is optimized for both the algorithms and average errors over five random runs are reported in Figure 1.

Figure 1. Classification error rates of k-NN classifier comparing LR-GMML with GMML. We obtain comparable performance in lower ranks.
References

