We address the problem of curve fitting on a Riemannian manifold \mathcal{M}: given $n+1$ data points $d_0, \ldots, d_n \in \mathcal{M}$, associated with real (time-)parameters t_0, \ldots, t_n, we seek a curve $\gamma : [0, n] \to \mathcal{M}$ being, on the one hand, “sufficiently close” to the data points, while, on the other hand, being “sufficiently straight”. A strategy to do so is to encapsulate the two above mentioned goals in an optimization problem

$$\min_{\gamma \in \Gamma} E_\lambda(\gamma) := \int_{t_0}^{t_n} \left\| \frac{d^2 \gamma(t)}{dt^2} \right\|^2 dt + \lambda \sum_{i=0}^{n} d^2(\gamma(t_i), d_i),$$

where Γ is an admissible set of curves γ on \mathcal{M}, $\frac{d^2}{dt^2}$ is the (Levi-Civita) second covariant derivative, $\| \cdot \|_{\gamma(t)}$ is the Riemannian metric at $\gamma(t)$, and $d(\cdot, \cdot)$ is the Riemannian distance. The problem also has a parameter λ that strikes the balance between the two goals of the problem, i.e., the regularizer $\int_{t_0}^{t_n} \left\| \frac{d^2 \gamma(t)}{dt^2} \right\|^2 dt$ and the fitting term $\sum_{i=0}^{n} d^2(\gamma(t_i), d_i)$.

We present here a method that extends the work of (Arnould et al., 2015). In a nutshell, we reduce the search space of (1) to the space of C^1 composite curves

$$B : [0, n] \to \mathcal{M} : f_i(t-i), \ i = [t],$$

made of so-called blended functions f_i. These blended functions are given by

$$f_i(t) = av[(L_i(t), R_i(t)), (1 - w(t), w(t))],$$

where $av[(x, y), (1 - a, a)]$ is a weighted mean, $w(t) = 3t^2 - 2t^3$, and where $R_i(t)$ and $L_i(t)$ are cubic Bézier curves (Farin, 2002) computed respectively on $T_{d_i}\mathcal{M}$ and $T_{d_{i+1}}\mathcal{M}, i = 0, \ldots, n - 1$, with the control points optimized with a technique similar to (Arnould et al., 2015). The blending method is represented in Figure 1.

The method guarantees the five following properties: (i) the curve is C^1 on $[t_0, t_n]$; (ii) the curve interpolates the data points d_0, \ldots, d_n when $\lambda \to \infty$; (iii) the curve is the natural cubic spline minimizing (1) over a Sobolev space $H^2(t_0, t_n)$ when \mathcal{M} is a Euclidean space; (iv) the method is designed for ease to use: it only requires the knowledge of the Riemannian exponential and the Riemannian logarithm on \mathcal{M}; (v) the curve can be stored with only $O(n)$ tangent vectors; and, finally, (vi) given this representation, computing $\gamma(t)$ at $t \in [t_0, t_n]$ only requires $O(1)$ exp and log evaluations.

Further details will be available in (Gousenbourger et al., 2018).

Figure 1. The composite curve $B(t)$ is made of cubic Euclidean Bézier curves computed on different tangent spaces, and then blended together with carefully chosen weights.

References

